Worksheet \# 6: Limit Laws and Continuity

An Interesting Fact: Mathematicians did not use a formal theory of limits between the invention of calculus in the 1660's and the formal definition of a limit in the 1820's. Even after the 1820's, mathematicians and scientists wrote lim without writing $x \rightarrow a$ below it. It appears that the widespread use of $\lim _{x \rightarrow a}$ was only adopted in the early 1900's after being used in several books, including one by G. H. Hardy titled "A Course of Pure Mathematics."

Remark on Notation: When working through a limit problem, your answers should be a chain of true equalities. Make sure to keep the $\lim _{x \rightarrow a}$ operator until the very last step.

1. Given $\lim _{x \rightarrow 2} f(x)=5$ and $\lim _{x \rightarrow 2} g(x)=2$, use limit laws to compute the following limits or explain why we cannot find the limit.
(a) $\lim _{x \rightarrow 2} f(x)^{2}+x \cdot g(x)^{2}$
(c) $\lim _{x \rightarrow 2} \frac{f(x) g(x)}{x}$
(b) $\lim _{x \rightarrow 2} \frac{f(x)-5}{g(x)-2}$
(d) $\lim _{x \rightarrow 2}(f(x) g(2))$
2. For each limit, evaluate the limit or or explain why it does not exist. Use the limit rules to justify each step. It is good practice to sketch a graph to check your answers.
(a) $\lim _{x \rightarrow 2} \frac{x+2}{x^{2}-4}$
(c) $\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}$
(b) $\lim _{x \rightarrow 2}\left(\frac{1}{x-2}-\frac{3}{x^{2}-x-2}\right)$
(d) $\lim _{x \rightarrow 0} \frac{(2+x)^{3}-8}{x}$
3. Let $f(x)=1+x^{2} \sin \left(\frac{1}{x}\right)$ for $x \neq 0$. Consider $\lim _{x \rightarrow 0} f(x)$.
(a) Find two simpler functions, g and h, that satisfy the hypothesis of the Squeeze Theorem.
(b) Determine $\lim _{x \rightarrow 0} f(x)$ using the Squeeze Theorem.
(c) Use a calculator to produce a graph that illustrates this application of the Squeeze Theorem.
4. For each of the following tasks/problems, provide a specific example of a function $f(x)$ that supports your answer.
(a) State the definition of continuity.
(b) List the three things required to show f is continuous at a.
(c) What does it mean for $f(x)$ to be continuous on the interval $[a, b]$? What does it mean to say only that " $f(x)$ is continuous"?
(d) Identify the three possible types of discontinuity of a function at a point. Provide a sketch of each type.
5. Show that the following functions are continuous at the given point a using problem 4 b .
(a) $f(x)=\pi, a=1$
(b) $f(x)=\frac{x^{2}+3 x+1}{x+3}, a=-1$
(c) $f(x)=\sqrt{x^{2}-9}, a=4$
6. Give the intervals of continuity for the following functions.
(a) $f(x)=\frac{x+1}{x^{2}+4 x+3}$
(b) $f(x)=\frac{x}{x^{2}+1}$
(d) $f(x)= \begin{cases}x^{2}+1 & \text { if } x \leq 0 \\ x+1 & \text { if } 0<x<2 \\ -(x-2)^{2} & \text { if } x \geq 2\end{cases}$
(c) $f(x)=\sqrt{2 x-3}+x^{2}$
7. Let c be a number and consider the function $f(x)=\left\{\begin{array}{ll}c x^{2}-5 & \text { if } x<1 \\ 10 & \text { if } x=1 \\ \frac{1}{x}-2 c & \text { if } x>1\end{array}\right.$.
(a) Find all numbers c such that $\lim _{x \rightarrow 1} f(x)$ exists.
(b) Is there a number c such that $f(x)$ is continuous at $x=1$? Justify your answer.
8. Find parameters a and b so that the following function is continuous

$$
f(x)= \begin{cases}2 x^{2}+3 x & \text { if } x \leq-4 \\ a x+b & \text { if }-4<x<3 \\ -x^{3}+4 x^{2}-5 & \text { if } 3 \leq x\end{cases}
$$

9. Suppose that

$$
f(x)= \begin{cases}\frac{x-6}{|x-6|} & \text { if } \quad x \neq 6 \\ 1 & \text { if } x=6\end{cases}
$$

Determine the points at which the function $f(x)$ is discontinuous and state the type of discontinuity.

Math Excel Worksheet \#6 Supplemental Problems

1. Let β be some fixed number greater than 0 . Let ω and ϕ be constants and define a function $f(x)$ by the equation

$$
f(x):= \begin{cases}x^{2}-2 x+3 & \text { if } x \leq 1 \\ \beta \cos (\omega x+\phi) & \text { if } x>1\end{cases}
$$

Is it possible to find values for ω and ϕ such that $f(x)$ is continuous everywhere? If so, find those values. If not, prove that it is not possible. Does your answer depend on the value of β ?
2. Find all values of c so that the following limits exist. Evaluate the corresponding limits.
(a) $\lim _{x \rightarrow c} \frac{2 x^{2}+5 x-3}{x-c}$
(b) $\lim _{x \rightarrow 1} \frac{x^{2}-4 x+c}{x+1}$
3. Let $f(x)=x^{2}+1$.
(a) Give the intervals of continuity for $f(x)$.
(c) Evaluate $g(5)$.
(b) Find $g(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
(d) Sketch the graph of $f(x)$. Indicate how $g(5)$ is represented on the graph of $f(x)$.

